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The Kolomogorov-Fokker--Planck equation is used to describe the kinetics of mass 
exchange, taking into account fluctuations of the main physical and chemical 
parameters. In a particular case, we present a solution of the problem. 

In the description of the kinetics of an arbitrary process, one considers the change 
of some quantities which characterize a real process in time and space. In mass-exchange 
processes, the calculation is usually carried out using average physical parameters (concen- 
tration of a component, temperature, velocity of motion of the materials, etc.). However, 
in many situations, for example, in desiccation, adsorption (desorption), extraction, grind- 
ing or mixing, the description of the processes in terms of the average quantities does not 
give exhausting information, and does not satisfy the requirements which are imposed by 
the technological practice. Usually, all technological processes which involve processing 
of dispersed media are by their nature random, and contain fluctuations of the main physical 
parameters. In mass-exchange processes, the random changes of these parameters can be 
caused by the polydisperse nature of the materials, collisions of the dispersed media, 
pulsating velocity field (in particular, turbulent pulsations), circulation current, con- 
tainment conditions, fluctuations of the external conditions, etc. In many real processes 
in real systems, it is therefore necessary to take into account the stochastic nature of 
these processes and to estimate the distribution of the degree of processing (uniformity) 
of the materials. 

Romankov et al. [i] made an attempt in this direction but did not take into account the 
physical foundations of the process. The solution of the problem by classical methods, using 
averaging of the turbulent motion and averaging in the mechanics of dispersed media, is 
difficult. In the present work we present a simplified method which uses the theory of 
Markov diffusion processes. 

The processes under consideration can be characterized by a multidimensional probability 
density function w(~, t) of points which describe the corresponding phenomenon in the phase 
space, where ~(t) = {E,(t), ~2(t), ..., ~n(t)}. The method of [2] will be used to derive an 
equation satisfied by w(~, t). Let us suppose that ~(t) satisfies a system of kinetic equa- 

tions 

d~, (t) _ Fi (~], t) + Fi (~, t), ~-(0) =~o ,  (1) 
dE 

! - -  

where Fi(~, t) is a deterministic function, and Fi(~, t) is a Gaussian random field delta- 
correlated in time, with average value <P~, t)>=0. The random process ~(t) is then a 
Markov diffusion process, and w(~, t) satisfies the Kolmogorov--Fokker--Planck equation [2-4]: 

0m(~, t) _= ,~  O [k~(~, t)~(~-, t)l -t- --f- [k, i~,  t) w(~,, t)], (2)  

where the first and second infinitesimal moments (drift and diffusion coefficients) of vari- 
ation of the random quantity ~(t)ki(~, t) and kij(~, t) are calculated from (I) using known 
rules [2, 4]. In other words, the nonlinear dynamical system (i) is replaced by the ex- 
tensively studied equation (2) for the probability density which completely describes the 
process. We shouldnotehere that if the drift coefficients are linear functions of $i(t), 
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n 

/=1 

and the diffusion coefficients are constant, kij(~, t) = const, the multidimensional pro- 
cess ~(t) is Gaussian, and it is possible in this case to obtain a general solution of Eq. 

! 

(2) [4]. Equation (2) is obtained under the assumption that the random field F i (~, t) 
I 

is delta-correlated in time, In real conditions, the random fields Fi(~, t) have finite 
correlation radius 3o in time, and this approximation is a good one only if the time To is 
much smaller than the characteristic times of change of the dynamical system (i). In the 
general case of non-delta-correlated processes, one can construct a method of successive 
approximations in which the present approximation is the first step. The subsequent ap- 
proximations take into account the finiteness of the time correlation radius 3o and lead 
to a system of closed operator equations [2]. For dynamical systems with non-Gaussian 
fluctuations of parameters, one can also obtain an approximation in terms of a Markov pro- 
cess. For example, for Poisson fluctuations, one obtains the Kolmogorov--Feller integro- 
differential equation [2], rather than Eq. (2). 

If the system is described by stochastic equations 

d~(t) _F~[~, F'(s t)], ~(0)--~o,  (1 ')  
dt 

where Fi(~, F) are deterministic functions, and F'(~, t) = {F[(~, t), F~(~, t), ..., 
F~(~, t)} are Gaussian random fields, it is in general impossible to obtain a closed equa- 
tion for the probability density w(~, t). However, for sufficiently small fluctuations 
F'(~,_t) z the right-hand side in Eq. (I') can be expanded in a series in powers of the func- 
tion F'($, t) and obtain the corresponding equation (2) in the linear approximation. It 
should be noted that the above discussion of the system (i) carries over without change to 
the case of a system of integrodifferential equations of the form 

d~t (t----L) = F, (~ 0 + S D,~ (~, y, t) F; (j, t) ~ ,  ~(0) = ~_ , ( l")  

where Dij(~ , y, t) is a deterministic tensor function, and if Dij(~ , y, t) = ~ij~(~-~), Eq. 
(i") reduces to (I) [2]. Noting the above considerations we shall below, without a loss of 
generality, consider only a dynamical equation of the form (i). It is necessary that each 
component $i(t) is a Markov process so that the complete process ~(t) is a Markov diffusion 
process [4]. 

For mass-exchange processes, the probability density w(~, t) will be represented in the 
form w(~, t) = w($, r, t), where w(~, r, tld~d~ is a fraction (number) of particles of the 
material which lie in the volume (r, r + dr) with their properties in the interval ($, ~ + 
d~), at time t. The coordinates ~i can be the concentration of the corresponding phase 
components, temperature, etc. 

We consider a sufficiently representative ensemble of dispersed materials which take 
part in the mass transfer and assume that it is characterized by a continuous distribution 
of concentrations of the corresponding components over the particles (volume). The kinetic 
equation (i) can then be written in the form 

do i at -F~(2,  t ) + p ; ( f , t ) ,  ~ 7  _ V + V ' , i = l  n. ( 3 )  
�9 d t  ' 

Here we assume that the process has no "memory" and the temperature fluctuations will 
not be determined, although it can be done. It should be noted here that the assumption of 
Markov nature of the mass-exchange process is not always exactly satisfied, and the corre- 
sponding Kolmogorov-Fokker--Planck equation is the first approximation of the real process 
which can, in many cases, be assumed justified with respect to the system (i) in view of the 
above considerations. The nonlinear equations (3) can be ascribed corresponding Kolmogorov-- 
Fokker--Planck equations. Here, if one cannot neglect the inertial of the particles, the 
velocity field must be included among the coordinates ~i in the phase space, and the system 
(3) must be supplemented by the momentum conservation laws of the corresponding phases, 
taking into account fluctuations. For a two-phase medium, these equations (which include 
the fluctuating terms) were obtained in [5] by the methods of ensemble averages. 
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In the present method for the description of processes in heterogenous systems by using 
the random diffusion quantities, the main point is the construction of the kinetic equations 
(i). To this end, it is necessary to solve hydrodynamic or other appropriate problems by 
using all the available a priori information. In the mass-exchange processes, this reduces 
to the simultaneous solution of the hydrodynamic equations, and the equation for the in- 
ternal or external convective diffusion. In other words, the function Fi(X, t) can be con- 
structed by using the solution of the equations for multivelocity continua and an averaging 
method in the mechanics of heterogeneous media [5, 6]. One should note here that the de- 
termination of the concentration fluctuations and, consequently, the distribution over the 
degree of processing can be attempted by using a direct solution of the mass-balance equa- 
tion and the equations of thermohydrodynamics [7], taking into account the fluctuations of 
the main physical parameters. However, to solve these equations simultaneously even for the 
simplest realistic systems is very difficult. Therefore, the above method makes it possible 
to overcome some of these difficulties. For example, one first solves an idealized and, in 
some sense, a model problem. Using this, one constructs the functions Fi(X, t) and, subse- 
quently, one takes into account the fluctuations and nonideality. 

For example, in conditions of complete absorption of matter on the surface of particles, 
one can write down the relation 

ff< dck~ - - l i  = Def On ./~h 
v~ dt 

(a) 

s k 

The r i gh t -hand  s ide  of  (4) can be determined us ing numerous known t h e o r e t i c a l  and e x p e r i -  
mental  s t u d i e s ,  fo r  example, accord ing  to [8].  In o the r  words, the f u n c t i o n s  Fi(X, t )  can 
be determined in the s imples t  cases .  Or, having in  mind simple homogeneous media,  one can 
in t roduce  a non l inea r  approximat ion  of  the  gene ra l  exp re s s ion  f o r  the c u r r e n t s  I i in  the  
form of a series 

2 1 ~ 1 2 L~jk .... qXj Xh Xq (5) Fi(X, t ) ~ l ~ =  LqX~q ~ LqkXjX~+ . . .  + q! 
1, 1i)=1 ] ,  (1), k = l  j , ( i ) ,h,q=l 

Further, by extending the method to engineering approximations for quasilinear and 
linear solutions one can easily obtain a result which is equivalent to a principle of linear 
thermodynamics of reversible processes, the Onsager approximation. According to [7], the 
driving force Xj can be represented in the form of an additive function 

( ~'ni ~ h i  @ i i (nh)  @ _ . , 
x , :  r,, r .  r .  2 r .  , ,, (6) 

which determines the rate of transport of component i between phases n and k. 

For simplicity, we consider below two-phase systems in which the mass exchange of some 

key component c takes place, principally because of the driving force X=( ~i ~21 h. 
\ T1 T2 ] 

To solve  t h i s  problem, the chemical  p o t e n t i a l s  must be expressed  in  terms of the c o n c e n t r a -  
t i o n  of the key component and in terms of  o the r  p h y s i c a l  parameters  ( t empera tu re  and p res -  
sure)  whose general functional dependence for realistic systems is unknown. Thus, in the 
first approximation, the function F(X, t) can be represented in the form 

P (X, t) ~ K (cp-- c), (7) 

where K is a complicated function of hydrodynamic conditions and the state of the system 
which can be determined from the simultaneous solution of the hydrodynamic problem and the 
convective diffusion equations or experimentally. Using (3) and (7), Eq. (2) then takes 
the form 

aw(e, 7 ,0 ~ a [v~(c, 7, t) ~ (c, F, O] + 

§ oT--e [_1<(c-c~)wr 7, 01+ -i-,=,j=, -axTxj [~.w(c, F, t)], 
(8) 
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where Vj are the components of the average velocity of motion of the dispersed phase, oij 
are the diffusion coefficients Kij(~, t), and X~Ec. 

Equation (8) describes the distribution of particles along trajectories in the phase 
space, and its solution describes completely the mass-exchange process. For the solution 
of Eq. (8), one must specify the initial distribution x(c, r, 0) and appropriate boundary 
conditions which should be formulated by taking into account a specific real process. Equa- 
tion (8) should be considered together with the hydrodynamic problem. In general, Vj and 
oij are functions of state of the system, coordinates and time, and the problem can be solved 
only by approximate methods. If one considers the particular case of a system with concentra- 
ted parameters when the mass exchange of one key component c takes place, (8) can be written 
in the form 

O~(c, t) 
_ 0 [K(c,  t) (c - -  cp) w (c, t)l + 1 0 = _  [o~(c, t)l, (9) 

8t Oc 2 Oc = 

w h i c h  w i l l  b e  s o l v e d  f o r  t h e  i n i t i a l  d i s t r i b u t i o n  

(c, o) = f (c) 
and boundary conditions 

(lO) 

(n )  
G [~ (Cmi n , t)] = O, G [~  (Cmax, t)] = O, 

1 O G [~  (c, t)] = K (c, t) ( c - -  cp) ~ (c, t) + - -  [c~  (c, t)l, 
2 Oc 

which indicate that there is no flow across the boundary of the representative points, where 
o is the intensity of random pulsations ("white noise"). Depending on the realization of 
the mass-exchange process and on the type of the apparatus, other forms of boundary condi- 
tions are also possible. 

From Eq. (9), one can obtain the known equation for the mass exchange with average con- 

r 
centration E =  f cw(c,t)dc in the form 

Cmin 

d~ 
d----}-- -- K ~ - -  c~). ( 1 2 )  

To obtain the solution of the problem (9)-(11), we use the method of finite integral 
transform [i0] which, in the present case, has the form 

Cmin--C p 

(V, t) = S w(z, t) P(z)M(z, ?)dz, (13) 
Cmax--Cp 

where M(z, y) is the kernel of the integral transform, P(z) is a weight function which 
brings the differential operator on the right-hand side of Eq. (9) to the self-adjoint form, 
and z = c -- Cp. The solution of the problem (9)-(11) for K(c, t) ~ const can be written 
in the form 

w(z, t) = ~ w~(0) exp[- -K(~--  1)t] M~(z), (14) 

where Mn(z) are the eigenfunctions which correspond to the eigenvalues ~n of the Weber dif- 
ferential equation [ii], and Wn(0) is determined from the initial condition (i0). Figure i 
shows the results of calculations using formula (14) for various values of the parameters. 
The degree (uniformity) of processing (mass exchange) depends strongly on the ratio k/o and 
on the value of o. The dispersion increases with increasing ratio k/o. For example, the 
average concentration m(c) and dispersion D(c) for various values of k/o for the steady- 
state distribution are as follows: i) k/o = i0; m(c) = 0.1298; D(c) = 0.6772"10-2; 2) k/~ = 
i00; m(c) = 0.544"i0-~; D(c) = 0.1815.10-2; 3) k/o = 310; m(c) = 0.327"10-:; D(c) = 0.58" 
10-3; 4) k/o = 1510; m(c) = 0.16"i0-:; D(c) = 0.12"10-3; 5) k/o = 3310; m(c) = 0.i0"i0-:; 
D(c) = 0.53-i0-~; 6) k/o = 8110, m(c) = 0.69"10-2; D(c) = 0.21"10 -~. The results of the 
calculations show that it is important to take into account random factors, since for large 
values of dispersion which correspond to small values of k/o, the description of the mass- 
exchange process in terms of the average concentration does not give complete information 
about the process. 
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Fig. i. Probability density w(c, t) 
for the initial distribution f(c) = 
6(c -- co) at various times (Cp -- 
Cmin = 0.001; Cma x = 0.3; co = 0.25; 
KI = K/3600): a) K/o = i0, K: = i0 
sec -I I-0: t = 0 sec; i-i: t = 
154.8 sec; 1-2: t = 864 sec; 1-3: 
stationary distribution, b) K/o = 
i00) KI = i0 sec-1: 2-0: t = 0 
sec; 2-1: t = 360 sec; 2-2: t = 2160 
sec; 2-3: stationary distribution. 
c) K/a = i00, KI = 1 see-l: 3-0: 
t = 0 sec; 3-1: t = 864 sec; 3-2: 
t = 2404.8 sec. 

When the parameters ~, k, Cp, Cma x, and Cmi n are known, the dependence (14) completely 
determines the mass-exchange process. If the driving force is a nonlinear function of the 
concentration c we obtain, in place of (9), another equation which should be solved for 
appropriate boundary and initial conditions. 

NOTATION 

w(~, t), probability density; ~(t) = {$i(t), ~(t), ..., ~n(t)}, coordinates in the 
phase space; ki(~, t) and kij(~ , t), drift and diffusion coefficients in the Kolmogorov-- 
Fokker--Planck equation; Fi(~ t) and Fl(~,_t), deterministic and random components on the 
right-hand side of the kinetic equations; X, mass-exchange driving force; V and V', average 
and pulsating velocities; ci, concentration of i-th component; Def, effective diffusion co- 
efficient; s k and Vk, surface area and volume of a particle; Ii, current component; Uji, 
chemical potential of component i in phase j; Cp, Cmin, and Cma x, equilibrium, minimum, and 
maximum possible values of the concentration, respectively; o, intensity of random fluctua- 
tions. 
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EQUILIBRIb~ AGGREGATION IN A MODERATELY CONCENTRATED FINELY DISPERSED 

SYSTEM 

Yu. A. Buevich UDC 541.182 

The equilibrium properties of dispersed small interacting particles capable of 
reversible aggregation are investigated. 

The aggregation and structurization of a finely dispersed system can lead to changes in 
its physical characteristics (effective viscosity, thermal and electrical conductivities, 
etc.) by more than one or two orders. The shape and structure of the aggregates formed de- 
pend on the interaction between the particles of the dispersion, and if the interaction is 
central fairly coarse aggregates can be regarded as approximately spherical. Below we con- 
sider a system of spherical aggregates in a state of detailed balance with one another and 
with single particles. We ignore the formation of structures by the aggregates, which is 
possible in a concentrated system. This restricts the analysis to reversible aggregation 
processes in moderately concentrated systems. 

Attempts to apply the techniques of equilibrium statistical mechanics to the investi- 
gation of such systems are rather rare [1-6]. The intrinsic volume of the particles is 
usually ignored in this case [1-5], which does not allow the examination of a highly con- 
centrated system; some critical comments on [1-4] are made in [6]. We adopt here the method 
of [6], based on the use of a lattice model of the type introduced in [7] and suitable for 
the analysis of concentrated systems; we also correct the inaccuracies in [6]. 

General Relations. Assuming that the states of a particle system with different 
"occupation numbers" ~i are distinguishable, we determine the total number of possible 
states of the system by the relation [6] 

where 

M! N! Ni! 
w ( ~ ) =  (M--N)! N! [INi! I], (i,)v~,~,. . Mv~,,-l~ , 

f 

(1) 

M -  V - P~ N, N = ~ N ~ ,  N~-=iv~. (2) 
(V/On) P i 

The f i r s t ,  " c o n f i g u r a t i o n a l , "  c o f a c t o r  in  (1) i s  e q u a l  to the  number o f  ways in  which N 
i n d i s t i n g u i s h a b l e  p a r t i c l e s  can be a r r a n g e d  in  a l a t t i c e  w i t h  M c e l l s  o f  the  same t y p e  [ 7 ] ;  
t h e  s e c o n d ,  " c o n f o r m a t i o n a l , "  c o f a c t o r  r e p r e s e n t s  t h e  number o f  ways i n  which N p a r t i c l e s  
can be d i s t r i b u t e d  among " a g g r e g a t e  p h a s e s "  w i t h  Ni p a r t i c l e s ;  t he  t h i r d  f a c t o r  i s  t he  num- 
be r  o f  ways in  which the  p a r t i c l e s  o f  t h e s e  p h a s e s  can be d i s t r i b u t e d  among d i f f e r e n t  a g g r e -  
g a t e s ,  w i t h  due a l l o w a n c e  f o r  t he  c o n s t r a i n t  e f f e c t s  m a n i f e s t e d  when p a r t i c l e s  which  a r e  no t  
free but are bound into aggregates are arranged in a lattice (see [8] also). In [2] the 
quantity W was mistakenly identified only with the second cofactor in (i), in [5] the con- 
figurational contribution to W was completely ignored, and in [6] the Boltzmann factor 
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